ON THE THECORY OF DIFFERENTIAL GAMES

OF SYSTEMS WITH AFTEREFFECT

PMM Vol, 35, N2, 1971, pp. 300-311
Iu. S, GSIPOV
(Sverdlovsk)
(Received July 22, 1970)

The game problem on the minimax (maximin) of the time to encounter with a given
closed set is considered for systems with aftereffect, The problem is investigated on the
basis of extremal strategies whose construction is based on the notion of absorption of
the target by the controlled process, This notion was introduced in [1] for systems
described by ordinary differential equations. The results are applied to linear systems in
connection with the extremal aiming rule for systems described by ordinary differential
equations [2], The present paper is directly related to studies [1-12],

1, Let a controlled system with aftereffect be described by the equation
de (1) ] dt = f, (£, 2, (8), w) + F2 (¢, 24 (s), V) (1.1y

Here x is the n-dimensional phase coordinate vector; the r;-dimensional vector « and
the .r,-dimensional vecter v are the controlling forces at the disposal of the first and
second player, respectively, These vectors are subject to the restrictions

uezP, ve Q (1.2)

where P, Q) are bounded closed sets; the functionals f; (¢, x(s), w) are continuous and
satisfy the Lipschitz conditions with respect to the functions z (s), —1 <Z s<C 0. (A
detailed description of system (1,1) will be found in [9, 10] along with definitions of
some of the notions and symbols occwring below).

In [10] the game problem of guiding system motions onto a given closed set M was
considered forsystem (1,1), We now propose to use the results of [10] to investigate the
game on the minimax (maximin) of the time to encounter of system (1,1) with the tar-
get M.

This game is as follows, The initial game position p, = {¢o, z, (5)}, (¢ & lta, 23)),

z (s) & (-, ¢} is given. The first player strives by suitable choice of strategy (see
[9]) to bring the metions = [¢] = z [¢, p,, U, Vrl onto the set M in the shortest pos-
sible time, The second player strives by suitable choice of the strategy V to prevent
encounter of motions z [¢] = z [{, p,, Ur, V] with the target M or at least to maxi-
mize the time until encounter occurs,

Let us agree on the following notation ; wishing to emphasize that we are referring to
some motion z [{] of system (1,1) and not to the position [¢] of this system at an
instant ¢, we denote the former by z [-]. For example, 2 [-] = z [+, p,, U, V7l
is the motion of system (1.1) from the position p, which corresponds to the strategies {/
and Vi (see [9]). Let us refine our statement of the problem, The result of the first play-
er's actions in the course of the game are estimated by the quantity

v (U) = sups1 v @ [-) (1.3)
where z [-] = {z [-, py, U, Vrl}, & (z [-]) is the first instant of encounter of the
motion .z [-] with the target M. (We set & = oo in (1, 3) if such an encounter does
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not occur),
Definitions, (1°). A strategy [/° is called the minimax strategy if

1 (U°) = miny v, (U) (1.4)
where min is taken over all the first-player strategies U/
(2°). A number Yo = ¥, (U°) is called the value of the game if

11(U®) = sup supy inf 9% (z[-]) (1.5)
>0 x{-1

where z [-] & {x [-, po, Ur, VI1}, 0% (z [-]) is the initial instant of arrival of the
motion z [-] in a closed e-neighborhood M, of the set M; supy is taken over all the
second-player strategies V.
(3°). Asequence {V;’} of strategies for which the condition
lim inf 8% (z [-]) =1, (1.6)
j=>x x[-]
is fulfilled (where z [-] &= {z [+, py, Ur, V/I}, & =const >0 (j = 1,2,...)
will be called the maximum sequence of second~player strategies,
In-the present paper we prove the existence of a minimax first-player strategy I/° and
of the value of the game; we also investigate the structure of the strategy [/° and of a
maximin sequence of strategies V,°.

2. In this section we investigate the properties of the sets of positional absorption of
the target M by system (1,1) by a given instant (see [9]) which are necessary for the
discussion to follow, For convenience we recall the following definitions from [9], Let
some game position p, = {f,, z, (s)} be given, We denote the distance from z to
M in E by o (z, M) .

Definitions, (4°), System (1,1) absorbs the target. M from the position p, by the
instant { positionally if

supinf min p(z[t], M)=0 (2.1)
Vo ox[]4,K1<0

where z [-1 & {z [-, p,, Ur, V1}, sup is taken over all the second-player strategies
V.
(5°). The collection of all functions z (s) & C|-«, ¢} such that from the position

P = {t, x (s)} system (1.1) absorbs M positionally by the instaat @ is called the set of
positional absorption of the target M by the instant ¢ and is denoted by the symbol

W (¢, 9).

Lemma 2,1, Theset W (t,, &) is closed in the space Cix, ¢ .

Proof. We shall prove the lemma by reductio ad absurdum, We begin by assuming
that there exists a sequence {z() (s)} of elements z®) (s) &= W (¢,, ¥) which con-
verges in (i) to the element z, (s) & W (t,, ). We denote by M (¢', t),

X (p, t", Ur, V) sets from the space E,,, {y} which are of the form

M@, t")={y="{(, 2|t '],z M)
X, ', U, V)= {y = ({1, {tll) l L& [, ¢’
T {t].] E {x [tl? P- UTv V]}v p = {t’rx# (8)}}

The closure of the set M in E,and of the set {z [-] = 2 [-, p, Ur,V]} in Cyr,im
(the latter follows directly from the definition of the motions x [-, p, Uy, VI)
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implies the closure of the sets M (', t"), X (p, t", Ur, V)in E,,,. Since
Ty (s) & W (t,, ®), by Definition (5°) there exists a second-player strategy V, such
that the closed set X (py, O, Ur, Vi), (py = {t4, T4 (5)}) does not intersect the
closed set M (t,, ©). Hence, some closed @-neighborhood (x > 0) X, (p,, ¥, Ur,
V) of the set X (p,, @, Ur, V,) also does not intersect M (¢, ) .

Now let us consider the system of sets Yy C,0,] of the form

Yi={z@)=zlt+sl|alt +sls {&lt + s, py, Ur, Vol}}

in the interval [f,, 8}, Let us show that this system of sets is strongly v-stable (see
[91). Let ¢y be an arbitrary instant from [¢,, ©], let z, (s) be an arbitrary element of
Y, .and let [ be an arbitrary first-player strategy, Clearly, we need only show that
in the space (y, 7 the intersection of the sets Q; = {z [, py, U,, Vrl} and
Q. = {z lt, py, Ur, V,l}. where p, = {t,, z, (s)},is nonempty. Let us consider
in Cyt,, o1 sequence {z [tlaj} {8;} — O of functions such that & (¢; + sla, = 2, ($)

and dx [t]Aj/dl = fi(t, ze[sla;u () + fa(trz [sla;, v;12])

for almost all ¢ & [#;, #]. Here u (¢) is the program control which generates the stra-
tegy U,; v ltl =05 [l € Vo(n, zulsla), i<t <tinm (m=w ()
Vo (¢, x (5)) is the set which defines the swrategy ¥,. We denote by F; (¢, x (s))(i =
=1, 2) the convex shell of the set of vectors {f; (¢, = (5), wy) | w; & W,}
(W, = P, W, = Q). By virtue of the bicompactness of the set of solutions of the
equation in contingencies
de (s)/dt & fy (¢, xa (8), u (£)) + £y (¢, 24 (5)) (2.2)

we can (choosing a subsequence if necessary) assume that the sequence {z [t]_A,.} con-
verges to some solution z° [£] of Eq. (2. 3). (The bicompactness of the collection of
solutions of Eq, (2.2) cor be proved just as the bicompactness in Cjt,, ) of the set of
solutions of Eq. (2.3) (- below)). The construction of the function z°[¢] and the
definitions of the motions z [ £, p, Ur, /8] yield the following relation : z° [t] =
€ 0 N ¢

Thus, the system of sets Y3, £, <C¢<C @ is swongly p-stable. Choosing a sufficiently
large 4 and proceeding on the basis of Lemma 2.4 of {10]we find that the second-player
strategy V¢ extremal to this system of sets ensures the inclusion

X(plh ‘01 UTZ Ve) o Xa (P*, ﬁ’ UTy Vo)

where py = {¢, z(® (s)}. By virtue of the condition of nonintersection of the sets
Xo Dy, ®, Ur, Vy), M (t,, ©),the latter contradicts Definition (5°) of the set
W (t,, ). The lemma has been proved,

Lemma 2.2, The systemofsets W (¢, §), #, << ¢t << &, is u-stable,

Proof. Let us assume the contrary, (see [9]), i. €. that there exist instants Z,, t*
from [y, 8], (¢* > ¢,), an element z, (s) = W (¢,, §) ,and a swrategy ¥V such
that the following Conditions are fulfilled simultaneously : (1) the sets Q* and W (¢*, ¢)
do not intersect; (2) the sets X (p,, ¢, Ur, V,) and M (¢, t*) do not intersect,
Hete Q* = {g(s) =z [t* + sl |z [t* sl = {« [t* + 5, Pur Ur.Vol}} C
C Cicop; X (Dg> B, Ur, V) are defined similarly to the sets X (p,, ¥, Ur, V)
(see above); Py = {ty, T4 (5)}-

It is important to nate that the set J*is a bicompact in the space C'(_. ;. In fact,
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proceeding on the basis of the continuity of the funetionals f; (¢, z (s), w) from (1.1),

the Lipschitz condition for these functionals with respect to z (s}, and the properties of

the sets P, Q' , we infer from (1.2) in the usual way (see [13]) that the set {z [¢]} =
= {z [t, py, Ur, V,}}of solutions of the equation

dz [t/ dt € F, (¢, z; [s]) + f (¢, 24 [s], v (2))
ty + sl =z, (5) (2.3)
is uniformly bounded and equicontinuous on [t,, t*]. Let us show that this set is closed
in Cpe,, ) (see [9]).

Let z[¢] be an arbitrary convergent sequence of elements from {z [¢, p,, Ur, V,1}
and let 2° [¢] be its limit, Since the absolutely continuous functions z(*)[¢] satisfy the
Lipschitz condition equicontinuously in the interval [¢,, t*], it follows that the limit
function z° [£], satisfies this condition and is therefore absolutely continuous on[z,, £*].

By virtue of the closure in E, of the set 4 (¢, z (5)) = Fy (£, 2z (5)) + f2 (¢, 2 (5),
v (£)) (which follows from the continuity of £, and the closure of P), we need merely
verify that for almost all ¢ &= [z, t*] the vector dz° [t] / dt belongs to an arbitrary
closed a-neighborhood Y (£, z¢° [s]) of the set v (¢, z° [sl).

Let x & [t,, t*] be an arbitrary point, where dz° [¢] / dt exists, By virtue of the
summability of v (¢) in [£,, £*] we can assume that the point s¢is the Lebesgue point
of the function ¥ (£). The definition of a derivative, the uniform convergence of
{z%) [t]} to 2° [¢], the continuity of the functionals f; (¢, z (s), w), and the Lipschitz
condition for them with respect to.x (s) imply that for any number & > 0 there exist
positive numbers A (A,<C ¢ — %) and &, such that for k> k,, A <A, we have

x~+A

Tl | 0@+ 1 2 10 @D 0y (A) (B, ) (24

where @, (8) & F, (8, #'%¥ [sl) is a summable function, and |w, (A) | << « / 3,
w, (A, k)| < /3.

Recalling that the set F; (&, x (s)) is semicontinuous above relative to inclusion
with respect to  (s), that the sequence {z®) [t]} converges uniformly to z° [¢], and
that x is a Lebesgue point of the function ¥ (£), we conclude that the number &/ 3 is
associated with numbers A; >> 0, k; Z> %y such that the vector defined by the first
term in the right side of (2, 4) is contained in the set V5 (%, z, [s]), provided that
A << A,, k >k,.By virtue of the convexity and closure of the set ¥ (£, z (5)} and
the arbitrariness of % , the above statements yield the required inclusion; the vector
de® [t /1 dt = ¥ (¢, z°[s]) for almost all ¢ & [¢,, t*],

The proven bicompactness in Cys,, 7 of the set of solutions {z [, p*, Ur, V,l}
and the definition of the element g (s) = z [t, 4 s, p,, Ur, V,] imply that the set
Q* is bicompact in C|_., g .

Let us take an arbitrary element gy (s) €= Q*. By the definition of the set W (¢, )
under Condition (1) there exists a second~player strategy V = V (g,) such that the set
M (t*, 9) does not intersect the set X (pg, &, Ur, V (qx)), where pp={t*, ¢n(s)}.

Let us consider the system of sets

Ti=f{z(s)=zlt+sl|zlt+sl{zlt +s, pu Ur, V(gl}}

in the interval [t*, O].
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Arguments similar to those above can be used to show that this system of sets is swongly
v-stable, But then, proceeding from Lemma 2,4 of [10] and recalling the closure of the
sets X (pr, 9, Ur, V (gn)), W (¢, 8), M (t*, B),we can say that there exist positive
numbers ¢y, P such that the set

Zk E U X(P,ﬁ, UTvve(qk))

gqe=S (By)

does not intersect a closed a,-neighborhood of the set 3/ (t*, ﬁ:’( Here V¢ (qk) isa
second-player strategy extremal (see [9, 10]) to the system of sets ', 2* <{t << ¥
and p = {t*, ¢ (5)}, ¢ (5) = Q*; S (B5) is 2 neighborhood of radius P yin Cy_c ¢} of
the element ¢ (s). By virtue of the proven bicompactness of the set (¥ this entire set
can be covered by a finite system of such neighborhoods S ( Ba)ik =1, ..., N. But the
foregoing then implies that the set Z, which is the union of the sets Z,, k = 1, ...,
«ees N, does not intersect the closed c-neighborhood M, (t* , ) of the set M (t*, 9),
where ¢ = min {a,, ..., &N }.

Now Iet us consider on the segment [¢,, O] the system of sets from the space Ci_-, o
which is of the form

Bi={z@)=zl+sl|zlt +sle{zlt+s py Ur, Vol}}
for t = ¢y, t*],and
Bi=f{z(=zlt+sl|alt +sles{zlt+s p, Ur, Ve (g:)1}}
for ¢ = [t*, 91, where
p={t* ¢} ¢ =05 {&l-, p, Ur, V* (@)1}

represents the collection of all motions of system (1.1) which generate the set Z con-

structed above, The definition of the system of sets B, implies that this system is strongly

v -stable (see the arguments above), Since z, (s) = B, it follows by Lemma 2.3

[10] that the second-player strategy V* extremal to the sets By, ¢, <C ¢ <C O satisfies

the condition  jnf  max |z,[s] —2(s)| =0, t,<t<O (2.5)
x(s)EB, —1s<0

where z [t] is any motion z [¢, p,, Ur, Vel

Since the sets Z and M (¢*, #) do not intersect, and since Condition (2) and the
inclusion z, (s) = W (¢,, ®), it follows that Eq, (2. 5) contradicts the definition of
the positional absorption set W (t,., #). The lemma has been proved.

Lemma 2.8, Theset W (Zo» ) is semicontinuous above relative to inclusion
with respect to ¥,

Proof, Let § = @, be an arbitrary instant larger than #,. We must show that for
any arbitrarily small positive number o > O there exists a positive number § = § (a)
such that the inclusion W (f,, 0) C W, (t,, ¥, ) is fulfilled for all ¢ which satisfy
the inequality | ¢, — 0 | << 86 (§ > t,) . Here W, (¢o, T4) is an c-neighborhood
in C[_-, o of the set W (¢,, ¥,),i. e. of the collection of elements y (s} &= Cy_-, o)
of the form y (s} = 2z () -+ z (s), where

z(s) = Wty, 84), |2 (9) o = max, |z (s) [ e

Let us assume the contrary, i. e, that there exists an o,-neighborhood of the set
W (¢4, 8,) such that however close the instant ¢ is to §, , the set W (¢, {J) contains
an element z, (s) which does not belong to W, (¢,, ¥,). By virtue of the inclusion
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W, 8)C W({,8,) for ¢<C 9, which follows from the definition of a. positional
absorption set, the only possxblhty here is that & > ¥,. since z, (s) & W (4, 9,),
the second player has at his disposal a strategy ¥, such that the closed set D (8,) =

= X (pg,Ou, Ur, Vy),where p, = {t;, z, (5)}, does not intersect the closed set
M (t5,.®,) (see above), But then some closed &-neighborhood D (§,) of the set
D (8,) does not intersect the set M (¢, &, -+ &). Further, proceeding from the defi-
nitions of the motions - [£, Pos Ur, V1 (see [9]) and ofthe set D (0,) .we canverify
directly that whatever the positive number ¢. and the instant 4* 2> ¢,, there exists a
number B, > O such that the inclusion D (8*4 B) CC D, (8*) is valid for B < B,
Setting 4* = ¥, e < ¥, choosing a number § sufficiently small to ensure that
0, + B = ¥, and recalling that the sets D, (%,) and M (¢, ¥, =+ &) do not inter-
sect, we find that the set D (§) also does not intersect M (¢, ,,+ &) . This contra-
dicts the condition x, (s) &= W (¢,, 9).

3, Now let us consider the game on the minimax (maximin) of the time until encoun-
ter of system (1.1) with the target M,

Let the initial game position p, = {fy, %y (5)} be such that

Z () € W (to, 0) (3.1
for some finite 9. Then there exists a smallest instant of positional absorption of the
target M by system (1.1) from the position Py, i. e. a smallest number O satisfying con-
dition (3,1), In fact, let us denote the exact lower bound of this set of numbers {0} by
B¢ = & (py). Assuming that §, is not contained in {8}, we conclude that Z, (s) is
not contained in the set W (t,, ¥,). The latter cannot happen by virtue of Lemma 2,3
and condition (3.1).

Now let {a ;} be an arbitrary sequence of positive numbers ¥; = ¥ — o which
converges to zero, Then z, (s) = W (¢, 9, j) o 50 that, by the definition of the sets
W (t, 9),there exists a second-player strategy V; which guarantees that the motions
z £, pos Ur, Vo) of system will not hit some closed ¢ -neighborhood of the set A/
for any ¢t e [¢t,, ;] . Bearing in mind what we have said and proceeding from Theo-
rem 2,2 of [10], Lemma 2, 2, and Definitions (1°) and (3°), we obtain the following sta=~
tement,

Theorem 3,1, Let the initial game position py, = {t,, z, (s)} satisfy inclusion
(3.1) for at least one ¥ << oo, Then there exists a smallest instant ¥, of positional
absorption of the target M by system (1,1). The first-player strategy [J¢ extremal to
the system of sets W (¢, ©,), ¢, <<t << ¥, ensures the condition

T (Uf) < B
The strategy [/¢ is minimax, 1, is the value of the game, and the sequence {V;} of
strategies is maximin,

Note 3.1, Itissometimes convenient to construct the maximin sequence {V,’}
as follows (see [3]), Let T (¢,,¥;) be a set of functions 2z (s) & C[_-, o such that the
following condition is fulfilled for motions z [-]1 = z [-, p, U, V7] of system (1.1)
from the position p = {¢,, z (s)}:

infsup min p(z[¢], M) > (3.2)

LSS B,
where mf is taken over all the first-player strategies U where g; is sufficiently small,
and z [-le {= (-, p, U, Vrl}.
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Arguments similar to those used to prove Lemmas 2,1 and 2,2 can be used to verify
the following statement,

Lemma 3.1. Thesets I' (¢, ¥;) are closed for any ¢ < |t,, ;] . The system
of sets T' (t, 9y), 2, << t < ¥ is swongly ‘v-stable,

Lemmas 2,3 [10] and 3,1 imply that the second-player strategy V;° extremal to
the system of sets ' (¢, ), £, <C ¢t < ©; ensures fulfillment of the condition

inf max [z, [s]—z(s)]=0
x (ST (2, 8;) —7<s<0

where x [t] is any motion x [¢, p,, Ur, V;’]. The sequence {V;°} is clearly maxi-
min,

Note 3.1. The results presented in Sects, 2 and 3 remain valid if the set'M varies
continuously with time, i,e, if M = M (t)s

4, The application to specific nonlinear systems of the above method for constructing
the minimax first-player strategy U° and the maximin sequence {V,°} of second-player
strategies entails difficulties having to do with the construction of the sets W (¢, )
and the determination of the instant of absorption .

However, in this case of linear system (1.1) we can follow the ideas of the monograph
[2] (as in the case of systems described by ordinary differential equations [8]) to deter-
mine the effective conditions of absorption of the target M by the controlled motion,
and also the conditions of deviation from this target, In place of the general procedure
for constructing the strategies U/° and V,° described above we can make use of the
extremal aiming rule [1, 2], The basic results obtainable in this way are described
briefly below,

Let system (1.1) be of the form

0

dzdfl) =v5 dA(t,s)z,(s)+ B({t)u—C(t)v (4.1)

—_

Here the components of the mawix 4 (¢, S) for a fixed ¢ are functions with bounded
variation in [—7, O] which are continuous with respect to ¢ for a fixed s; B (¢), C (t)
are continuous matrices; the integral is to be understood as a Stieltjes integral, we
assume that the sets P and ( of (1.2) are convex and that they depend continuously on
t,i.e that P = P (t), Q = Q (¢); the set M is described by the condition
{z}m € M°,where M° is a convex, bounded, and closed set (the symbol {K },, denotes
a matrix consisting of the first m rows of the matrix K). We assume that the strategies
Uand V are permissible, i, e. that the defining sets U (¢, z (s)), V (¢, z (s)) are convex,
closed, and semicontinuous above relative to inclusion with respect to ¢ and z(s). The
motions of systems (1, 1) are now formalized within the framework of differential equa-
tions in contingencies with aftereffect. By a motion of system (1.1) from the position
Po = {to» Zo (5)}, generated by a pair of strategies U, V we now mean any function
z [t] = z [¢, py, U, V] continuous for ¢ > t, which satisfies the condition

z [ty + sl = z, (s) and (for almost all ¢ > ¢,) the inclusion

dz [z]
dt

0
= (a4, 92+ BOU G s)—COV (Lo ls) (4.2)
(the existence of such solutions of system (4. 2) by taking the limit of Euler broken
curves [7]).
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We denote by €, (¢, 0, z (s)) (6 > £, z (s) & C[, ¢ the quantity
[+]

oo (t,3,2(5) = mav | § s & 0,1) — s (5,00 D} 5 +

+p0()—1{ @020 + \ dSi(t.5,9)2(s)) (4.3)

provided the right side of (4. 3) is nonnegative, Here / is an m-dimensional vector ;

!‘"1 (Ev g, % (S)) = maxu l {5 (01 g)B (g)muv u E P (E)
by (8, 0, 1) = max, I {§ (0, E)C (§)}mv, vE Q (8); po () = min, ly

0
ye= M° dS (o, t)/dt=—SS(0, t—s)dA (t, s), t<<o; S(t t)=E

-T
T

$(0,1)=0,t>0 8 (t,0,5) =\S (0.t + DA+ & s — Byt
0
(we complete the definition of the function A (¢, s) for values § <C -7 for each ¢
in accordance with the equation A (£, s) = A (¢, —T) (see [14, 15]).
Let us denote by g = ° the smallest root of the equation
€ (t01 g, Xy (S)) = 01 o > to (4'4)
if this equation has a solution, Otherwise, we take 3° to represent an arbitrarily large
number, larger than {,.
Now let us assume that there exists a convex set D (0, ) such that the following
conditions are fulfilled for any ¢ & [t,, O,l, 0 = ¢, 9°] :
) {S(0,2) B®)}m P () = {S (0, 1)C ()}n0Q () + D (¢, 0);
(2) for any u = P (¢) there exists a v = @ (¢) such that
(S (0, OB O}t — (S (6, C O} =D (o, 1).
(These conditions correspond to the conditions which occur in the problem of the mini-

max and maximin of time-optimal response in the case of ordinary systems [2, 8]).
Wwe define the sets U* (¢, z (s)), V;* (¢, z (s)) as follows:

U (t,z(s)) = {u|q(t,0°, 2 (s))u* = max g (£,9°, z(s)) u} (4.9)
if  gy(¢,0°2(s))>0; U*(t,z(s)) = P (b)), if & (¢, 9%, 2(s) =0
Vi*(t, z(s)) = {v,*| 4; (2, 0%, x (s)) v = Jax g (8,9 z(s))v}  (4.6)

if p={t,z(NE6;  V/(tz(s)=0Q0), if p&g,

Here g (¢, 9°, z (s)) = I° (¢, 0°, 2 (5))-{S (8°, ¢) B (£)}m and I° (¢, 0, z (5)) is the
vector which maximizes(4.3) (this vector is unique by virtue of Condition (1));
8°—a.j

g (8. 0%,z() = § [ea(t,0,2(NI L (1, 2 () (S (5, ) C (1)} do
(11>0, {“i}'—’o
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theset G; = {{t, z ()} | ming & (¢, 0,2 () >0, ¢ <5< 8 — ;.

Theorem 4.1, LetConditions (1) and (2) be fulfilled for system (4.1). If Eq.
(4.4) has a solution, then the sequence {V;*} of strategies defined by sets (4, 6) is maxi-
min; 9° is the value of the game, If Eq, (4. 4) has no solutions, then the second-player
strategy V;* ensures deviation of the motions of system (1.1) from the target 4/ until
an arbitrarily large instant 3.

This theorem can be proved in the same way as the analogous statements of (8], The
principal phase of the proof of optimality of the strategies V;* is the estimation of the

right upper derived number lim sup (AL; / At) of the functional
At—to
Bo—a:

Lithz(s) = \ [e(t,s,z(s)™"ds
t

along the motions of system (1,1); this number is given by

9°—.‘lj

lim sup <%Lrj><1.1> = [eg(t t, 2 [s])]F + \ [eo (£, 3, 2, [sDI2 L (8, 5,2, [s]) X

XUS@ ) B@)hnultl ={S(3,8)C(1)mv;e (1] + pa (3, (¢, 0,2 [5]) —
—uy (¢, 6,0°@, 0, 2 [s]))]ds

Here u [¢] is the realization of the first-player control dictated by the strategy U/;
v; [¢] is the realization of the second-player control dictated by the strategy V;*.
Under Conditions (1) and (2) the control v;* [¢] in the domain G; ensures the inequality
limsup (AL; /At) <O
At—t0

whatever the first-player strategy [/ , We infer from this that the strategy V;* ensures
deviation of the motions x [¢] of the system (4, 1) from the target } at least until
the instant §; = 4° — «;.

Note 4,1, Theorem 4,1 implies that the set W, (¥) of program absorption of
the target A/ by system (4,1) at the instant 4 (see [9]) consisting of those and only
those Z (8) & C[--,g], which for any vector / satisfy the inequality

&

Clin @ 9,0 — o (6,9, 0y dE — 0o (1) +

t
0

F S (B, )z (0) + \dSy(8,D,5)2(5)}n >0
coincides under Conditions (1) and (2) with the positional absorption set W (¢, #) which
plays a fundamental role in the basic text (Sects. 2 and 3) of the present study, We also
note that (4, 7) implies that the sets W, () are convex and closed in C[_ ).

Note 4,2, In the particular case where the set }/° is a point {Z},, = U, the set
M is an (n — m)-dimensional linear subspace, whereupon Conditions (1) and (2) in the
absence of aftereffect become the conditions occurring in {12], where, however, the
problem of evasion is solved under the additional assumption of opponent discrimination,

In connection with Conditions (1) and (2) let us consider very briefly the conditions
of regularizability of the problem of convergence with a set (see [2], Sect.21) in the
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case of system (4. 1) with aftereffect. The problem of convergence consists in construct-
ing a first-player strategy U, which ensures that all the motions z [t] = z [¢, p,, U,,
V] of system (4, 1) hit the smallest possible e°-neighborhood of the set M at a given
instant ¢ ,

If for any t= [ty, ), z (s) & Cp.z,0) which satisfy the condition ¢, (¢, ¥, z (s)) >

> 0 (see (4. 3)), the maximum in (4, 3) is attained on a unique vector I° (¢, ¥, z (s))
(it is sufficient for Condition (1) to be fulfilled in order for this to happen) then, as in
the case of ordinary systems [12], the problem can be solved on the basis of the extremal
aiming rule [2]: the required strategy U,= U*, where [/* is defined by sets (4, 5) (we

must set 3° = &, 0 = §) in (4.5), where &° = g, (t,, ¥, , (s)) (see also [11]).
Such a case of the problem is called regular [2].

For nonregular cases of the convergence problem where the system is described by
ordinary differential equations monograph [2] gives so-called regularizability conditions
upon whose fulfillment the convergence problem can also be solved with the aid of the
rule of generalized extremal aiming rule. It turns out that these regularizability condi-
tions can be formulated in similar form in the case of system (4. 1) with aftereffect,

These conditions are as fallows: for any ¢ & [¢,, 0] there exists a convex set R (¢)
such that (a) {S (o, &)C )}nQ (¢) = {S (0.?)B ()} mP (t) + R (t); (b) for any
v & Q (t) there exists a u & P (¢) such that

{S (0, )C O}m? — {S (6, 1) B )} u = R (2).

Under conditions (a) and (b) there exists a strategy I/ which guarantees to the first
player a result which is arbitrarily close to the best result equal to €°, This statement
can be proved by the method outlined in Sect, 21 of [2], on the basis of arguments simi-
lar to those used to prove Theorem 4,1.

The author is grateful to N, N, Krasovskii for his valuable suggestions and remarks,
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Problems of optimal control with incomplete information are of considerable interest in
connection with practical control problems, In the present paper we investigate the prob-
lem of optimizing the process of tracking an object in the case of incomplete and inex-
act data on its position, The errors in the measured data are due to: (1) information
lag, (2) the presence of random disturbances in the measuring instruments, Certain
assumptions enable us to educe the problem of determining the optimal tracking law

to an ordinary optimal c.ntrol problem, The optimal tracking law is obtained in expli-
cit form for certain quality criteria,

1, Let the motion of the object under investigation be described by the system of

differential equations £ =400 +70 1.1

and let the tracking system have available to it the vector y (£) given by

t t
y(t) =0 z(s = myds + {s(s) dE (s) (1.2)

where the [-dimensional vectors () and ¥ (¢) belong the the Euclidean space E;.
Unless otherwise indicated, the vectors from E; occurring below are to be understood
as column vectors; The ]"th coordinate of a vector will be denoted by the same letter
as the vector with the subscript j, For example, the vector z (t) = (zy (¢), ..., z; (t))';
here and below primes indicate transposition,
we assume that the following restrictions on the coefficients of Egs, (1,1),(1.2) are
fulfilled throughout; the (] X [ )-dimensional matrices 4 (f), Q {t) , ¢ {t) and the
vector f (¢) = E,; the elements of f () and A (¢) are continuous, and the elements
of ¢ (t) and Q (¢) are Borel-measurable and bounded ; the constant b > 0 ; finally,
& () which is a Wiener random process, assumes values from E; and has independent



