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The game problem on the minimax (maximin) of the time to encounter with a given 

closed set is considered for systems with aftereffect. The problem is investigated on the 
basis of extremal strategies whose construction is based on the notion of absorption of 
the target by the controlled process. This notion was introduced in Cl] for systems 

described by ordinary differential equations. The results are applied to linear systems in 
connection with the extremal aiming rule for systems described by ordinary differential 

equations p]. The present paper is directly related to studies [l-12]. 

1, Let a controlled system with aftereffect be described by the equation 

da: (t) /at = fi (tt 5t (a), u) + fs (t, 5t (a), r4 (,l.l) 

Here z is the n-dimensional phase coordinate vector, * the r,-dimensional vector U. and 

the r-,-dimensional vecter u are the controlling forces at the disposal of the first and 

second player, respectively. These vectors are subject to the restrictions 

u E p, UEQ (1.2) 

where P, Q are bounded closed sets ; the functionals fi (t, z(s), w) are continuous and 

satisfy the Lipschitz conditions with respect to the functions z (s), --z < .s< 0. (A 
detailed description of system (1.1) will be found in [9, lo] along with definitions of 

some of the notions and symbols occurring below). 
In [lo] the game problem of guiding system motions onto a given closed set Mwas 

considered for system (1.1). We now propose to use the results of [lo] to investigate the 
game on the minimax (maximin) of the time to encounter of system (1.1) with the tar- 

get M. 
This game is as follows. The initial game position p0 = {to, x0 (s)), (t E [t,, tp)), 

5 (S) E C I--T. 01 is given. The first player strives by suitable choice of strategy (see 
[9]) to bring the motions 2 It] = x It, po, U, VT] onto the set fif in the shortest pos- 
sible time. The second player strives by suitable choice of the strategy F’ to prevent 

encounter of motions 5 I tl = s [t, po, UT, VI with the target Mar at least to maxi- 

mize the time until encounter occurs. 
Let us agree on the following notation : wishing to emphasize that we are referring to 

some motion x It] of system (1.1) and not to the position x [t] of this system at an 

instant t, we denote the former by _z [. 1. For example. x [. ] = x 1. , po, U, VT] 
is the motion of system (1.1) from the position p. which corresponds to the strategies U 
and v,r (see [9]). Let us refine our statement of the problem.The result of the first play- 
er’s actions in the course of the game are estimated by the quantity 

yr (U) = supX[.l Y (z I-1) (l-3) 
where x [ .] E {x [. , po, U, VT]}, 6 (X [ .]) is the first instant of encounter of the 
motion .z [ .] with the target icf. (We set 6 = ‘M in (1.3) if such an encounter does 
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not occur). 

Definitions. (I’). A strategy’UO is called the minimax strategy if 

Ylwv= mhyN) WV 

where min is taken over all the first-player strategies U 
(2’). A number YO = Yl (@?) is called the value of the game if 

Tl (-q = ;;f SUPV 2.; @ (2 I - I) (1.5) 

wheresf-lE{xf*,po, UT, ~l~,~~(~[*l~is~ e initial instant of arrival of the 
motion z f - 1 in a closed ~.-neigh~rh~d IV8 of the set M; supf is taken over all the 
second-$ayer strategies 7, 

(3’). A sequence iv?) of strategies for which the c~d~tion 

lim inf 69 (s [. 1) = To 
F- a.3 

(1.6) 

is fulfilled (where 5 [ . ] E (z [ . , po, UT, VF]>, cj = const > 0 (j = 1,.2, . ..) 
wflf be called the maximum sequence of second-player strategies. 

In.the present paper we prove the existence of a minimax first-player strategy .U” and 
of the valtle ofthe game: we also investigate the structure of the strategy U” and of a 
maximin sequence of strategies Vjo. 

2. In this section we investigate the properties of the sets of positional absorption of 
the target kf.by system (1.1) by a given instant (see p]) which are necessary for the 
discussion to follow. For convenience we recall the following definitions from [9]. Let 
some game position p* = (t *, z* (.$I be given. We denote the distance from 3 to 
M in E, by p (x, M) . 

Definitions. (4’). System (1.1) absorbs the target .&.f from the position p* by the 
instant 6 positionally if 

sup inf min p (5 It], M) = 0 
v ct[.] t,gcge WI 

where 2 I-1 E (3 f -, pa, UT, Vf), sup is taken over all the second-player strategies 
V. 

(5’). The collection of all functions x (s) E C’+, ol such that from the position 
P = (t, x (S)} system (1.1) absorb$M positionally by the instant 6 is called the set of 
positional absorptibn of the targerM by the instant 6 and is denoted by the symbol 

T;v (t* 6). 
Le m ma 2.X. The set W (t*, 6) is closed in the space cl_.,, ol . 
Proof. We shall prove the lemma by reductio ad absurdurn. We begin by assuming 

that there exists a sequence (&) (s)) o.F elements z(k) (s) E W (t*, $3) which con- 
verges in CI_+,~, to the element z,* (8) e I%’ (to, 6). We denote by kf (t’, t”), 
X (p, f’s UT; V) sets from the space En+.1 (y ) which are of the form 

The closure of the set M in &&and of the set {X [‘-I’ = x [a, p, u~,Vlj in C~I*,I~~I 
(the latter follows directly from the definition of the motions x 1. t p, I/T~ VI) 
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implies the closure of the sets M (t’, t”), X @, t”,. UT, V) in E,+l. Since 
“* (s) @Z w (t,,, , a), by Definition (5’) there exists a second-player strategy V, such 

that the closed set X (p*, 6, UT, vo), (p* = {t*, Z* (s)}) does not intersect the 
closed set M (t*, %), Hence, some closed a-neighborhood (a > 0) X, (J+, , %, UT, 
V,) of the set X @*, 6, UT, VO) also does not intersect M (t*, 0) . 

Now let us consider the system of sets Ytc Cp,~,l of the form 

Yt = {x (s) = 2 [t + sl 15 It + sl E {x [t + s, p*, UT, I/‘ol}) 

in the interval ft, , %I. . Let us show that this system of sets is strongly v -stable (see 

191). Let tl be an arbitrary instant from [t,, %I, let zI (s) be an arbitrary element of 

yt * and let U,be an arbitrary first-player strategy. Clearly, we need only show that 

in the space Crt,, em the intersection of the sets Q1 = {z It, pl, U,, VT]} and 

Q2 = {Z [t, pit UT,. V,]}. where pr = {tI, zr (s)}~ is nonempty. Let us consider 
in Clt,, 81 a sequence {Z ItJ*j} (61)’ --t 0 of functions such that 5 (tl + sly,. = zI (s) 
and 

& [t]Ajidt = fl (t, ‘t I’IAjr U (‘)) + fa (text [SIA~~ uj ItlJ 

for almost all t G kl, %l.. Here u (t) is the program control which generates the stra- 

tegy U,; 111 [tl = Uj [Til E VO (Tit G~[Sl&~), Tj G t < G+l (zi = % (i)); 

I?0 (t, x (s)) is the set which defines the strategy V,, We denote by Fi (t, z Is))(i = 

= 1, 2) the convex shell of the set of vectors {fi (1,. x (s), Iui) / wi E Wi} 
(TV, = p, w, = Q). pv virtue of the bicompactness of the set of solutions of the 

equation in contingencies 

dz: 6) / d e 11 (6 21 (aIt ZL (Gj -I- f, (rr xt (a)) (2.2). 

we can (choosing a subsequence if necessary) assume that the sequence {X blaj} con- 

verges to some solution x0’ If] of Eq. (2.3). (The bicompactness of the collection of 
solutions of Eq, (2.2) c? r be proved just as the bicompactness in cft., P] of the set of 

solutions of Eq. (2.3) (’ below)). The construction of the function Z* [t] and the 
definitions of the motions z [ t, p, UT, 6’1 yield the following relation : x0 [tl E 
E 0,. II Qz. 

Thus, the system of sets Y,, t, & t < e is strongly v-stable. Choosing a sufficiently 

large ? and proceeding OR the basis of Lemma 2.4 of [lO].we find that the second-plnyer 
strategy ve extremal to this system of sets ensures the inclusion 

x (pk,+.t UT, ve) t XL&*, @,uT,v,) 

where pi = {t* xtk) (s)}. By virtue of the condition of nonintersection of the sets 

& @*, %, UT, V,), M (t*, 6) , the latter contradicts Definition (5.) of the set 

w (r*, %); The lemma has been proved. 

Lemma 2.2. The system of sets W (t, %), to < t ,( 6, is u-stable. 

Proof. Let us assume the contrary, (see [9].)_, i.e. that there exist instants t,, t* 

from [to, 61, (t* > t*), an element x* (s)‘ E W (t,, 6) , and a strategy c such 

that the following Conditions are fulfilled sirrkltaneously : (1) the sets Q* ;yld W (t* , %) 
do not intersect; (2) the sets X (pa, 6, U+, V,,) and M (t*, t*) do not intersect. 

Here Q* = {q (s) = 2 It* + sl 1 z [t* + sl E {x It* + s, P+, UTLVvo])} C 
c C[-+,01; x @*, %, UT, V,) are defined similarly to the sets 2 (p*, 6, UT, v) 

(see above); P* = {t*, X* (a)). 
It fs important to note that the set Q*is a bicompact in the space C’L_r,o). In fact, 
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proceeding on the basis of the continuity of the funetionals ft (t, z (s), W) from (1. I), 
the Lipschitz condition for these functionais with respect to 5 (s), and fhe properties of 
the sets P, Q , we infer from (1.2) in the usual way (see p3j) that the set (x [tf) = 

= ix [t, p*, UT, V,]} of solutions of the equation 

dz: [tl I at El F, (t, Zt bl) + fi (tc a [sl+ 21 (4) 

5 [t* + $1 = =* (4 (2.3) 

is ~iform~y bounded and equi~ntinuous on It,, t*]. Let us show that this set is closed 

in CLt,, 1’1 (see PI). 
Let x[t] be an arbitrary convergent sequence of elements from {z [t, p?, UT, YJ} 

and let x0 [t] be its limit. Since the absolutely continuous functions tik)[t] satisfy the 
Lipschitz condition equicontinuously in the.interval [t,, t*] , it follows that the limit 
function so [t] , satisfies this condition and is therefore absolutely continuous on k, , t* 1. 

By virtue of the closure in E,, of the set 9 (t, z (s)) = F, (t, z (s}) 3_ fe (tl x (s), 
v (t)) (which follows from the continuity of fi and the closure of P) , we need merely 
verify that for almost all t E [t,,. t*l the vector dz” [t] / 02 belongs to an arbitrary 

closed a-neighborhood qar (t, ‘q” [s]) of the set ‘II, (t, st“ [s]). 
Let x E It,, t* 1 be an arbitrary point, where &I? [t] / dt exists. By virtue of the 

summabi~~ of 2) (t) in It,, t*l we can assume that the point wis the Lebesgue point 
of the function v (t). The definition of a derivative, the uniform convergence of 

{xck) [t]} to x0 [t], the continuity of the functionals fi (t, x (S), W) , and the Lipschitz 
condition for them with respect to .x (s) imply that for any number a > 0 there exist 
positive numbers A,(A,< t - X) and k, such that for k > k,, A Q A,, we have 

where (ok (8 E Fl (E, x(k) [sl) is a summable function, and (1 zu, (A) II< CL / 3, 

~2 (A, k,)II< al 3. 
Recalling that the set Fl (5,~ (s)) is semicontinuous above relative to inclusion 

with respect to 5 (s), that the’sequence {SF [tf} converges ~iformly to 9 [tl, and 
that 3c is a Lebesgue point of the function ‘U (t), we conclude that the number d / 3 is 
associated with numbers Al > 0, k, 2 I%, such that the vec.tor defined by the first 

term in the right side of (0.4) is contained in the set Y,, (X, xi [Sl), provided that 

A < AI, k >,k,. By virtue of the convexity and closure of the set II, (t, z (s)\ and 
the arbitrariness of x , the above statements yield the required inclusion: the vector 

d?* It1 I dt E Y (t, St” ISI), for almost all t fZ It,, t*l , 
Ttte proven bicompactness in Cc*,, ty of the set of solutions (x It, p”, UT, %‘,I) 

and the definition of the element Q (s) = z [t, f s, p*, UT, V,,] imply that the set 

Q* is bicompact in Cc_.,, 0~ . 
Let us take an arbitrary element qA (s) E Q*. By the definition of the set W (t, 6) 

under Condition (1) there exists a second-player strategy v = V (qk) such that the set 

M (t*, 6) does not intersect the set X (pA, 6, UT, V (qd), wherepk=(t*, qua. 
Let us consider the system of sets 

rt = (2 (s) = 2 [t + sl I z [t + 81 E {z [t + s, Pk, UT, v (Qk)l}} 

in the interval It*, @j’. 
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Arguments similar to those above can be used to show that this system of sets is strongly 
I: -stable. But then, proceeding from Lemma 2.4 of [lo] and recalling the closure of the 

sets x @A7 6, UT, v fqk))*W (t, @>, Mft”, 9> , we can say that there exist positive 
numbers a k, fi k such that the set 

&= u x (p, 6, UT 7 T/‘” (qk)) 

(IES (Pk) 

does not intersect a closed a;k-neighborhood of the set M (t*, @j._ Here ye (Qk) is a 
second-player strategy extremal (see [Se lo]) to the system of sers rt, t* ,( t < 6 

and P = @*, Q (SK Q (4 E Q*; s @A) is a neighborhood of radius p Kin CL-,, 0; of 
the element qk (S). By virtue of the proven bicompactness of the set Q’ this entire set 

can be covered by a finite system of such neighborhoods S (PA), k = 1, . . . . N. But the 

foregoing then implies that the set 2, which is the union of the sets Zk, k = 1, . . . , 

..‘I N, does not intersect the closed &neighborhood M,(t* , 6) of the set M (t*, 61, 
where a = min (CQ, . . . . a~}- 

Now Iet us consider on the segment ft,, @I the system of sets from the space Ct-,, ok 
which is of the form 

Bt = {X (S) = X [t + a] 12 [t i- Sl E {X [t + S, p+, UT, v,l)> 

for t E [t,, t*l ,and 

Bi = {z fs‘r = x ft + s] 1 2 [t + Sl E {g it + St P, UT, ye tQk)j)) 

for t E It*, b].where 

p = {t*, q (s)}, q (8) E Q*; (5 I-, p, UT, V’ (qd]) 

represents the collection of all motions of system (1.1) which generate the set 2 con- 
structed above. The definition of the system of sets Bt implies that this system is strongly 

2t -stable (see the arguments above). Since z* (s) f!~ BL,, it follows by Lemma 2.3 

[lo] that the second-player strategy V extremal to the sets Bt, t, Q t ,( 6 satisfies 
the condition inf max l]zt [s] - 5 (s) II= 0, t*<t<s (2.5) 

x (F)EB, --s<s<o 

where 2 It] is any motion x [t , p*, UT, PI. 
Since the sets Z and &l (t *, 3) do not intersect, and since Condition (2) and the 

inclusion t* (s) E W (t*, $1, it follows that Eq, (2.5) contradicts the definition of 
the positional absorption set &’ (t*, -6). The lemma has been proved. 

Lemma 2.3. The set W (to, +). is semicontinuous above relative to inclusion 

with respect to 6. 

Proof. Let 6 = 6, be an arbitrary instant larger than to. We must show that for 
any arbitrarily small positive number cz > 0 there exists a positive number 6 = 6 (a) 

such that the inclusion W (to, 6) C W, (t,,, 6,) is fulfilled for all 6 which satisfy 
the inequality 1 6, - 6 1 < 6 (6 2 t,) . Here FVa (to, 6,) is an a-neighborhood 

in CI_~,~I of the set W (to, 6,), i.e. of the collection of elements y (s) E Cc=, oj 
of the form y (s) = x (s} + z (s), where 

x (s) t= W (to, 6,), I] 2 64 IT = mas, /I 2 (s) JJ < cc. 

kt ps assume the contrary, i.e. that there exists an ao-neighborhood of the set 
w (to, &,) such that however close the instant 6 is to 6,, the set IV (to, 6) contains 
an element x* (s) which does not belong to W, (to, 6,). By virtue of the inclusion 
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w (r ,@) C @’ (t , **) for d < 6, which folows from the. definftion of a. positional 
absorption set, the only possibility here is that 6 > 6,. Since x* (s} E W (t@, @,>, 
the second player has at his disposal a strategy v,, such that the closed set I) (6,) = 

= X (p*,6,, UT, V&where P* = {to7 a$ (s)), does not intersect the closed set 
M &.tie) (see above), But then some closed-a-neighborhood D, (e*) of the set 

D (I?*) does not intersect the set M (to, 6, f 8). Further. proceeding from the defi- 
nitions of the motions-5 tt, pa, UT, VI (see fS]) and ofthe set D (es,) ,we canverify 
directly that whatever the positive number a. and the instant 6” > t,, there exists a 
number &, > 0 such that the inclusion ,D (8*+ 6) c: D, (6*) is valid for f5 & fiO 
Setting 12* = 6,, E < 6, choosing a number fi sufficiently small to ensure that 
6, f g = 6, and recalling that the sets D, (fi*) and kf (t,, 6, Lt a) do not inter- 
sect, we find that the set II (6) also does not intersect M (to, 6,,$ a) . This contra- 
dicts the condition x* (s) E W (t,, 6). 

3. Now let us consider the game on the minimax (maximin) of the time until encoun- 
ter of system (1.1) with the target M. 

Let the initial game position p. = {to, x0 (s)} be such that 

Xcl (s) E W(ts, *> (3.9) 
for some finite 6. Then there exists a smallest instant of positional absorption of the 

target &’ by system (1.1) from the position po, i, e. a smallest number 6 satisfying con- 

dition (3. I). In fact, let us denote the exact lower bound of this set of numbers (6) by 
60 = 6s (PO). Assuming that 6, is not contained in {6}, we conclude that Xa (a) is 
not contained in the set w (to, 6,). The latter cannot happen by virtue of Lemma 2.3 
and condition (3.1). 

Now let {a>) be an arbitrary sequence of positive numbers 61 = 6s - a which 
converges to zero. Then X0 (s) E W (t, ej) , so that, by the definition of the sets 
W (t, 9) , there exists a second-player strategy Vj which guarantees that the motions 
X [r, PO, UT, V,] of system will not hit some closed &j-neighborhood of the set M 
for any t E [to, fill . Bearing in mind what we have said and proceeding from Theo- 
rem 2.2 of [lo], Lemma 2.2. and Definitions (1”) and (3”). we obtain the following sta- 
tement. 

Theorem 3.1. Let the initial game position ~~ = (to, x0 (8)) satisfy inclusion 
(3.1) for at least one 6 < ca . Then there exists a smallest instant @-, of positional 

absorption of the target M by system (1.1). The first-player strategy Ue extremal to 

the system of sets W (t, 6,), to < t sg 6,, ensures the condition 

Yr (W G 60 

The strategy Ue is minimax, 6, is the value of the game, and the sequence {Vj} of 
strategies is maximin. 

Note 3.1. It is sometimes convenient to construct the maximin sequence {VP} 
as follows (see [3]). Let I’ (t*, 61) be a set of functions z (s) E CI,, ,,l such that the 

following condition is fulfilled for motions x [ - I = x [ +, p, U, VT1 of system (1. I) 
from the position p = {t*, x (s) j: 

infsnP min o(X [t], M)>q 
u t,ctqJi (3.2) 

where inf is taken over all the first-player strategies U where ej is sufficiently small, 

and z [*I E {z-I*, p, U, VT-~}- 
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Arguments similar to those used to prove Lemmas 2.1 and 2.2 can be used to verify 
the following statement. 

Lemma 3.1. The sets r (t, 8,) are closed for any r E It,, Sj] . The system 

of sets r (t, 6j), to ,( t < 61 is strongly +stable. 

Lemmas 2.3 [lo] and 3.1 imply that the second&player strategy Vf” extremal to 
the system of sets I’ (t, 6,). t, < t < ttl ensures fulfillment of the condition 

inf max ~crt[S]--5(S)[I=0 
x(‘)Er(t, 8j) --sgs<o 

where x [t] is any motion x [t, po, UT, Vj’]. The sequence {vje} is clearly maxi- 
min. 

Note 3.1. The results presented in Sects. 2 and 3 remain valid if the settiM varies 
continuously with time, i.e. if M =_M (t). 

4. The application to specific nonlinear systems of the above method for constructing 
the minimax first-player strategy U” and the maximin sequence {V,“} of second-player 
strategies entails difficulties having to do with the construction of the sets W (t, 6) 

and the determination of the instant of absorption fro. 
However, in this case of linear system (1.1) we can follow the ideas of the monograph 

p] (as in the case of systems described by ordinary differential equations [8]) to deter- 
mine the effective conditions of absorption of the target .u by the controlled motion, 
and also the conditions of deviation from this target. In place of the general procedure 

for constructing the strategies U” and V,” described above we can make use of the 

extremal aiming rule [ 1, 2J. The basic results obtainable in this way are described 

briefly below. 

Let system (1.1) be of the form 

s =-( 
\ dt I 

d-4 (2, s) x1 (s) + B(t) u - C (t) u (4.1) 

Here the components of the matrix A (r, s) for a fixed t are functions with bounded 
variation in i-r, 01 which are continuous with respect to t for a fixed s ; B (t), C (t) 
are continuous matrices ; the integral is to be understood as a Stieltjes integral. We 
assume that the sets P and Q of (1.2) are convex and that they depend continuously on 
t, i.e. that P = P (t), (, = Q (t); th e set M is described by the condition 

{Xjrn fZ M”, where MO is a convex, bounded, and closed set (the symbol’(K), denotes 
a matrix consisting of the first m rows of the matrix K). We assume that the strategies 

u and T/’ are permissible, i.e. that the defining sets U (r, z (s)), V (t, x (s)) are convex, 
closed, and semicontinuous above relative to inclusion with respect to t and z(s). The 

motions of systems (1.1) are now formalized within the framework of differential equa- 
tions in contingencies with aftereffect. By a motion of system (1. I) from the position 
p. = {toI .q, (s)}, generated by a pair of strategies U, v we now mean any function 

5 [tl = I It, po, U, VI continuous for t > tn which satisfies the condition 

z [to f sj = x0 (a) and (for almost all t > to) the inclusion 
0 

dx 1x1 
7 fs { &I (2, s> zt IsI + B(t) U (k $1 [sl) - c(t) Tr (h 51 ISI) (4.2) 

(the existence of suii solutions of system (4.2) by taking the limit of Euler broken 
curves VI). 
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We denote by e, (t, u, x (s)) (a > t, x (s) E CI_,, ,,, the quantity 

EO (t, 5,x (s)) = may 

provided the right side of (4.3) is nonnegative. Here ,? is an m-dimensional VeCtOC ; 

@I (E? or 5 6)) = max, 1 (3 (0, E)B (HmU, u E P (f) 

t4 (El 0, 4 = ma% l {S (a, E)C (E)}me, u E Q (E); p. (I) = min, Zy 

0 

Y E M"; dS ((3, t) I dt = - 
s 

S (a, t - s)dA (t, s), t < a; S (t, t) = E 
-7 

S (0, t) = 0, t > 0; s1 (t, u, s) = ‘s S (a, t + &I (t + E, s - E)dE 
0 

(we complete the definition of the function A (t, s) for values S < - z for each t 
in accordance with the equation A (t, S) = A (t, -T) (see [14. 151). 

Let us denote by u = 6” the smallest root of the equation 

a0 (fo, (J, x0 (S)) = 0, o 2 to (4.4) 

if this equation has a solution. Otherwise, we take 6” to represent an arbitrarily large 

number, larger than to. 
Now let us assume that there exists a convex set D (a, t) such that the following 

conditions are fulfilled for any t E [to, 6,], u E ‘[t, So] : 
(1) {S (a, t) B (t)h,, P (t) = {S (0, t)C (t)hnQ (t> + JJ (t, 0); 
(2) for any u E P (t) there exists a v E Q (t) such that 

{S (09 t)B (t)LU - {s (0, t)C (t))n,v E D Cu., t). 

(These conditions correspond to the conditions which occur in the problem of the mini- 
max and maximin of time-optimal response in the case of ordinary systems @, 83). 

We define the sets U* (t, x (s)), Vi* (t, x (s)) as follows: 

u+(t,x(S)) ={u’~q(t,W, x (s)) ue =ug;;p (t, fc z(s)) u> (4.5) 

if EO(t,W,5(s))>O; ui’ (t, x(s)) = p (t)), if EO(t,W,5(S)) =0 

vj* (t, z (S)) = {Vj’l Qj (t9 6”~ 5 (S)) Vjc = max Qj (t, W, 2 (S)) V} 
v=? (0 

(4.6) 

if p={t,s(S))}~Gj; Vi (t; 5 (s)) = Q(t), if P @ Gj 

Here q(t, 6”, z (s)) = I” (t, 6”, J (s))*{S (6”, t) B (t)}m and 2” (t, u, I (s))is the 
vector which maxfmizes(4.3) (this vector is unique by virtue of Condition (1)) ; 

e"-aj 

4j(tt,6Ps x!:(s)) = 1 [Eo’(t, Q, x (s))I-~ I” (4 c, 5 (s)) (8 (0, t> C (t)},, ds 
I 

% >o* iail 3 O 
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the set Gj = {{t, x (s)} 1 min, e0 (t, ~,5 (s)) > 0, t, < 5 < 6” - aj}. 
Theorem 4.1. Let Conditions (1) and (2) be fulfilled for system (4.1). If Eq. 

(4.4) has a solution, then the sequence { Vj* } of strategies defined by sets (4.6) is maxi- 
min; 6” is the value of the game. If Eq. (4.4) has no solutions, then the second-player 

strategy Vj* ensures deviation of the motions of system (1.1) from rhe target 111 until 
an arbitrarily large instant 6j. 

This theorem can be proved in the same way as the analogous statements of [8]. The 
principal phase of the proof of optimality of the strategies Vi* is the estimation of the 

right upper derived number lim sup (ALj / At) of the functional 
Af*+a 

O”-aj 

Lj(t,r(S)) = $ [Eo(~,~,X(S))I-‘~~ 

along the motions of system (1.1) ; this number is given by 

x [isC5v t>B(t))mz‘ ItI --‘{S(s~t)C(~)~m~j”[tl + pz(tc ~tlO(t,Q,X1 [Sl)) - 

Here u [tl is the realization of the first-player control dictated by the strategy U; 
Vj’ It] is the realization of the second-player control dictated by the strategy vj*. 

under Conditions (1) and (2) the control Vj@ [t] in the domain t$j ensures the inequality 

lim sup (ALj/At) & 0 
Ah+0 

whatever the first-player strategy U . We infer from this that the strategy VI* ensures 
deviation of the motions z [tl of the system (4.1) from the target fii at least until 

the instant 6j = 0” - aj. 

Note 4.1. Theorem 4.1 implies that the set Wt (6) of program absorption of 

the target A1 by system (4.1) at the instant 6 (see [9]) consisting of those and only 

those x (S) E: c[-T,~l, which for any vector 1 satisfy the inequality 

(4.7) 

coincides under Conditions (1) and (2) with the positional absorption set w (t, 8) which 
plays a fundamental role in the basic text (Sects. 2 and 3) of the present study. We also 
note that (4.7) implies that the sets kVt (79) are convex and closed in CI-~,~I. 

Note 4.2. In the particular case where the set ill” is a point {Z}m = I), the set 

JP is an (n - m) -dimensional linear subspace, whereupon Conditions (1) and (2) in the 

absence of aftereffect become the conditions occurring in [12], where, however, the 
problem of evasion is solved under the additional assumption of opponent discrimination. 

In connection with Conditions (1) and (2) let us consider very briefly the conditions 
of regularizability of the problem of convergence with a set (see c;?], Sect. 21) in the 
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case of system (4.1) with aftereffect. The problem of convergence consists in construct- 
ing a first-player strategy Us which ensures that all the motions x It] = 5 [t, p,,, Us, 

VT] of system (4.1) hit the smallest possible $-neighborhood of the set ikf at a given 
instant 6 . 

If for any TV [to, 6), 2 (s) E ci_.s,OI which satisfy the condition E,, (t, 6, z (s)) > 
> 0 (see (4.3)). the maximum in (4.3) is attained on a unique vector I?” (t , 6, 5 (s)) 

(it is sufficient for Condition (1) to be fulfilled in order for this to happen) then, as in 

the case of ordinary systems [12], the problem can be solved on the basis of the extremal 
aiming rule @I: the required strategy Us= U*, where U* is defined by sets (4.5) (we 

must set 6” = 6, o = 6) in (4.5),,where co = E,, (to, 6, x,, (s)) (see also [lx]). 
Such a case of the problem is called regular p]. 

For nonregular cases of the convergence problem where the system is described by 

ordinary differential equations monograph @] gives so-called regularizability conditions 

upon whose fulfillment the convergence problem can also be solved with the aid of the 

rule of generalized extremal aiming rule. It turns out that these regularizability condi- 
tions can be formulated in similar form in the case of system (4.1) with aftereffect. 

These conditions are as follows: for any t E [to, 61 there exists a convex set R (t) 
such that (a) {S (o, t)C (t>},,@ (t) = {S (a. t)B (t)},P (1) + R (t); (b) for any 
21 E Q (t) there exists a u E P (2) such that 

{S (0, W (t)}rnt~ - {S (0, t) B (t>}m u E R (t>. 

Under conditions (a) and (b) there exists a strategy U which guarantees to the first 
player a result which is arbitrarily close to the best result equal to E’. This statement 

can be proved by the method’outlined in Sect. 21 of @I, on the basis of arguments simi- 

lar to those used to prove Theorem 4.1. 

The author is grateful to N. N. Krasovskii for his valuable suggestions and remarks. 
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Problems of optimal control with incomplete information are of considerable .interest in 
connection with practical control problems. In the present paper we investigate the prob- 

lem of optimizing the process of tracking an object in the case of incomplete and inex- 
act data on its position. The errors in the measured data are due to: (1) information 
lag, (2) the presence of random disturbances in the measuring instruments. Certain 
assumptions enable us to educe the problem of determining the optimal tracking law 

to an ordinary optimal ccntrol problem. The optimal tracking law is obtained in expli- 

cit form for certain quality criteria. 

1, Let the motion of the object under investigation be described by the system of 

differential equations 
z’ (t) = A (t)s (t) + f (t) (1.1) 

and let the tracking system have available to it the vector y (t) given by 

where the Z-dimensional vectors x (t) and y (t) belong the the Euclidean space Et. 
Unless otherwise indicated, the vectors from Er occurring below are to be understood 

as column vectors; The ]:th coordinate of a vector will be denoted by the same letter 

as the vector with the subscript i. For example, the vector 5 (t) = (x1 (t), . . . . x1 (t))‘; 
here and below primes indicate transposition. 

We assume that the following restrictions on the coefficients of Eqs. (1. l), (1.2) are 
fulfilled throughout: the ( ,? x 1 )-dimensional matrices A (t), Q (t) , (r ft) and the 

vector f (t) E El ; the elements of f (t) and A (t) are continuous, and the elements 

of o (t> and Q (t) are Borel-measurable and bounded; the constant h 2 0 ; finally, 

g (t) which is a Wiener random process, assumes values from .EI and has independent 


